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The purpose of this study is to develop a software for the extraction of the hippocampus and
surrounding medial temporal lobe �MTL� regions from T1-weighted magnetic resonance �MR�
images with no interactive input from the user, to introduce a novel statistical indicator, computed
on the intensities in the automatically extracted MTL regions, which measures atrophy, and to
evaluate the accuracy of the newly developed intensity-based measure of MTL atrophy to �a�
distinguish between patients with Alzheimer disease �AD�, patients with amnestic mild cognitive
impairment �aMCI�, and elderly controls by using established criteria for patients with AD and
aMCI as the reference standard and �b� infer about the clinical outcome of aMCI patients. For the
development of the software, the study included 61 patients with mild AD �17 men, 44 women;
mean age�standard deviation �SD�, 75.8 years�7.8; Mini Mental State Examination �MMSE�
score, 24.1�3.1�, 42 patients with aMCI �11 men, 31 women; mean age�SD, 75.2 years�4.9;
MMSE score, 27.9�1.9�, and 30 elderly healthy controls �10 men, 20 women; mean age�SD,
74.7 years�5.2; MMSE score, 29.1�0.8�. For the evaluation of the statistical indicator, 150
patients with mild AD �62 men, 88 women; mean age�SD, 76.3 years�5.8; MMSE score,
23.2�4.1�, 247 patients with aMCI �143 men, 104 women; mean age�SD, 75.3 years�6.7;
MMSE score, 27.0�1.8�, and 135 elderly healthy controls �61 men, 74 women; mean age�SD,
76.4 years�6.1�. Fifty aMCI patients were evaluated every 6 months over a 3 year period to assess
conversion to AD. For each participant, two subimages of the MTL regions were automatically
extracted from T1-weighted MR images with high spatial resolution. An intensity-based MTL

atrophy measure was found to separate control, MCI, and AD cohorts. Group differences were
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assessed by using two-sample t test. Individual classification was analyzed by using receiver oper-
ating characteristic �ROC� curves. Compared to controls, significant differences in the intensity-
based MTL atrophy measure were detected in both groups of patients �AD vs controls, 0.28�0.03
vs 0.34�0.03, P�0.001; aMCI vs controls, 0.31�0.03 vs 0.34�0.03, P�0.001�. Moreover, the
subgroup of aMCI converters was significantly different from controls �0.27�0.034 vs 0.34�0.03,
P�0.001�. Regarding the ROC curve for intergroup discrimination, the area under the curve was
0.863 for AD patients vs controls, 0.746 for all aMCI patients vs controls, and 0.880 for aMCI
converters vs controls. With specificity set at 85%, the sensitivity was 74% for AD vs controls, 45%
for aMCI vs controls, and 83% for aMCI converters vs controls. The automated analysis of MTL
atrophy in the segmented volume is applied to the early assessment of AD, leading to the discrimi-
nation of aMCI converters with an average 3 year follow-up. This procedure can provide additional
useful information in the early diagnosis of AD. © 2009 American Association of Physicists in
Medicine. �DOI: 10.1118/1.3171686�
Key words: magnetic resonance imaging, image analysis, Alzheimer disease, hippocampus
I. INTRODUCTION

Early and accurate diagnosis of Alzheimer disease �AD� is
challenging. In recent years, the early clinical signs of AD
have been extensively investigated, leading to the concept of
amnestic mild cognitive impairment �aMCI�, an intermediate
cognitive state between normal aging and dementia.1–5 aMCI
patients experience memory loss to a greater extent than ex-
pected for their age, and they progress to a diagnosis of AD
at a faster rate than controls.1,2

A challenge for modern neuroimaging is to help in the
diagnosis of early AD, particularly in aMCI patients. Three-
dimensional �3D� magnetic resonance �MR� imaging with
high spatial resolution allows visualization of subtle ana-
tomic changes and thus can help detect brain atrophy in the
initial stages of the disease.6 For this reason, sensitive neu-
roimaging measures have been investigated to quantify brain
structural changes in early AD which are automated enough
to permit large-scale studies of the disease and the factors
that affect it. To date, these studies have particularly focused
on assessing atrophy of medial temporal lobe �MTL� struc-
tures, including the hippocampus �for a review of this topic
see Refs. 7–11�.

Methods to assess hippocampal atrophy have largely been
based on volumetric measurements,9,12,13 on mapping the
spatial distribution of atrophy in 3D scans,14–18 or on visual
rating scales.19 Volumetric measurements typically rely on
manual outlining of the MTL structures on �serial� MR im-
ages, which is time consuming and prone to inter-rater and
intrarater variabilities. Thus, large-scale studies of AD-
related hippocampal atrophy are often impractical.20 Visual
rating scales, although simple to use and suitable for a clini-
cal application, were not designed to detect atrophy progres-
sion on serial imaging; their quantized nature makes them
insensitive to change over time.21

To accelerate and spread epidemiological studies and
clinical trials, some automated systems have been proposed
for hippocampal segmentation,22–28 but none is yet widely
used29 due to the high computational burden,30 unsatisfactory
results,31 or poor generalization capability.24
In order to overcome these difficulties, in this work we
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describe the development of a simple, quick, and operator-
independent method to extract two fixed size �30�70
�30 mm3�, parallelepiped-shaped subimages from a MR
image. These subimages contain both the hippocampus and
the perihippocampal region; in the following they are de-
noted as hippocampal boxes �HBs�.

From the automatically extracted HBs we derive a novel,
intensity-based, statistical indicator, which carefully mea-
sures the MTL atrophy and is able to distinguish between
patients with AD, patients with aMCI, and elderly controls
and also between converters and nonconverters to AD within
the aMCI population with reasonably good accuracy.

II. DEVELOPMENT OF THE SOFTWARE

II.A. Subjects

At the development stage the study included 61 patients
with mild AD �17 men, 44 women; mean age�standard de-
viation �SD�, 75.8 years�7.8; Mini Mental State Examina-
tion �MMSE� score, 24.1�3.1�, 42 patients with aMCI �11
men, 31 women; mean age�SD, 75.2 years�4.9; MMSE
score, 27.9�1.9�, and 30 elderly healthy controls �10 men,
20 women; mean age�SD, 74.7 years�5.2; MMSE score,
29.1�0.8� �see Table I�.

The diagnosis of aMCI was made according to the criteria
of Petersen et al.,2 while the diagnosis of AD was made
according to the NINCDS-ADRDA �Ref. 32� and the
DSM-IV criteria.

The presence of dementia was evaluated on the basis of
clinical interview with the patient and caregiver, question-
naires for the activities of daily living �ADLs�,33 instrumen-
tal ADL �IADL�,34 and clinical dementia rating �CDR� scale
�the result was 0.5 in all aMCI patients and 1.0 in all AD
patients�. General cognition was assessed by means of
MMSE.35

All patients underwent a standard battery of blood count,
blood chemical examinations, and urinalysis, according to
the commonly followed rules in order to exclude secondary
causes of cognitive impairment. The presence of analpha-
betism, major vision disturbances, psychiatric illnesses, epi-

lepsy, major head trauma, Parkinsonism, previous stroke or

http://dx.doi.org/10.1118/1.3171686


3739 Calvini et al.: Automatic analysis of MTL for AD early assessment 3739
TIA, and brain masses was another exclusion criterion. A
mild depressive trait, as ascertained by the 15-item geriatric
depression scale �GDS�, was not an exclusion criterion. Neu-
ropsychiatric symptoms were assessed by interviewing the
informant with the neuropsychiatric inventory �NPI�.36 Pa-
tients scoring higher than 0 on the delusion and the halluci-
nation NPI items were excluded.

MR imaging was performed in all patients by means of a
1.5 T equipment. Only patients with evidence of major stroke
were excluded, while white matter �WM� hyperintensities,
leukoaraiosis, and lacunae were not exclusion criteria.

The follow-up of the patients began with a clinical exami-
nation, also comprehensive of MMSE, ADL, and IADL
questionnaires and CDR, and this was repeated every 6
months. A follow-up time of at least 1 year was available for
all patients.

The 30 control subjects were recruited among a group of
healthy volunteers attending university courses dedicated to
elderly people. They all gave their informed consent. Their
healthy condition was carefully checked by means of general
medical history and clinical examination, and the same ex-
clusion criteria as for patients were applied, with the excep-
tion of cognitive complaints. MMSE was performed, and
only subjects with a normal score �i.e., �26� were consid-
ered for this study. Moreover, only subjects with a CDR of 0
were included. The enrolled controls underwent brain MR
imaging and the same neuropsychological battery as the pa-
tients. The protocol received the approval of the local ethics
committee.

II.B. Image acquisition

T1-TFE volumetric MR imaging was performed in all pa-
tients using 1.5 T equipment �Gyroscan Intera, Philips Medi-
cal Systems, Best, The Netherlands� to acquire a sagittal se-
quence with the following parameters: TRs of 8.7 ms, TEs of
4.1 ms, flip of 8, FOVs of 256 mm, matrix of 256�256, 150
sagittal slices, and voxel size of 0.98�0.98�1.6 mm3. All
images were resampled to make them isotropic with voxel
size of 1�1�1 mm3.

II.C. Extraction of the hippocampal boxes

The extraction method relies on the fact that the gray level
contrast displayed by the hippocampal formation and adja-
cent structures is unique all over the brain. Therefore, a pro-
cedure can be developed to identify the hippocampal region
unambiguously. Neuroanatomical considerations suggested
the size of a HB as a 30�70�30 mm3 parallelepiped-

TABLE I. Ensemble properties of our “development”

AD

No. of subjects 61 �17 men, 44 women�
Age �years� 75.8�7.8
MMSE score 24.1�3.1
shaped box �sizes of right-to-left, posterior-to-anterior, and
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inferior-to-superior directions, respectively�. The extraction
of the 266 HBs �133 right and 133 left� was performed with
an automatic procedure, that required minimal interactive in-
tervention. Here we illustrate only the process for the extrac-
tion of the right HBs, the procedure for the extraction of the
left ones being the same.

First, all MR scans were labeled and denoted as MR�i�
�i=1, . . . ,133�. Then all images were spatially normalized to
stereotactic space �ICBM152� via a 12-degrees-of-freedom
affine transformation,37 which normalizes the brains in terms
of dimensions, position, and spatial orientation. Conse-
quently, all hippocampi share similar positions and orienta-
tions. Three slices cut from a 3D MR image after spatial
normalization and the outline of the hippocampal ROI are
shown in Fig. 1.

After spatial normalization, the first HB was manually
extracted by an expert reader from MR�1�, the scan of a
healthy control displaying minimal atrophy. Particular care
was applied in the positioning of the box boundaries in order

cts. The error is one standard deviation.

MCI Controls

11 men, 31 women� 30 �10 men, 20 women�
75.2�4.9 74.7�5.2
27.9�1.9 29.1�0.8

FIG. 1. �a� Axial, �b� sagittal, �c� and coronal views of an image after align-
ment with the ICBM152 template. On the three slices an outline of the right
subje

42 �
hippocampal box is also shown.
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to place the hippocampal formation in the inner portion of
the box. The next step of the procedure consists in extracting
the second HB from the remaining 132 MR images.

The extraction procedure is based on the registration of
the first HB �the fixed image� onto the remaining 132 images
�the moving images� via a six-degrees-of-freedom rigid
transformation �three translational and three rotational de-
grees of freedom�.

A definition of distance between two HBs drives the reg-
istration procedure in that it provides a measure of how well
the transformed moving image matches the fixed image. In
this way a quantitative criterion is assigned for finding the
optimal values of the transformation parameters. We adopted
a definition of distance based on the normalized correlation
coefficient C. Assigning the HBs A and B, each one consist-
ing of N voxels �N=63 000 in our case�, the corresponding C
is given by

CA,B =
��=1

N
�A� − Ā��B� − B̄�

���=1

N
�A� − Ā�2���=1

N
�B� − B̄�2

, �1�

where voxel intensities A� and B� of HBs A and B, respec-
tively, are labeled by a single index �Greek letter� following

lexicographic ordering, and the average intensity Ī is given
by

Ī =
1

N
�
�=1

N

I�, �2�

where I=A ,B. From this quantification of similarity, one de-
rives the following definition of distance between A and B:

dA,B = 1 − CA,B. �3�

This distance is scale and shift invariant and it produces a
cost function with sharp peaks and well defined minima. It
has a relatively small capture radius,38 but this fact does not
represent a severe limitation in our case because all images
are aligned in the same stereotactic space and thus the search
for the hippocampal formations requires the exploration of a
small parameter space.

The success of the registration of each moving image onto
the fixed image is quantified by the minimum reached in
distance values, �. With a moderate computational effort, one
could extract all the 132 remaining right HBs by using the
first manually defined HB alone, but the quality of the results
is not homogeneously good. In fact the fixed image is suc-
cessful in extracting the HBs which are not too dissimilar
from it. However, due to the ample morphological variability
contained in the population of MR images, some HBs exist
which are unsatisfactorily extracted or not found at all.

Therefore, a more complete approach is required. The
population of the remaining 132 MR images is registered
onto the fixed image, i.e., the HB extracted from MR�1�.
Thus, for each given value of index j �2� j�133� this op-
eration produces the value of the score, �1,j, and of the six
geometrical parameters, three translations and three rotation

angles. Such values are stored in the first row of seven
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strictly upper triangular matrices. We emphasize that no ac-
tual HB extraction is performed at this stage.

On the basis of the presently available score list �the first
row of matrix ��, the second box is extracted from MR�j��
where j� is the index of the minimum �not vanishing� value
of �1,j. In our application we obtain j�=13. Now the extrac-
tion of the new HB is really performed by using the corre-
sponding values of the geometrical parameters
�x1,13 ,y1,13 ,z1,13 , . . .�.

Once the second HB is available, the remaining 131 mov-
ing images are registered onto this new fixed image, and a
new set of scores and geometrical parameters are obtained
and stored in the second row of the seven matrices. The third
extracted HB is selected from MR�j��� where now j�� is given
by the index of the minimum �not vanishing� value of �1,j

and �2,j. In this search for the minimum score, the entries
corresponding to the already extracted HBs must be skipped.

The procedure for the progressive extraction of all HBs
follows this scheme and the extension to an increasing num-
ber of HB examples is obvious. The procedure stops once the
whole sample of 133 images has been processed and the 133
right HBs have been obtained.

Except for the extraction of the first HB, the whole pro-
cess runs automatically, without any manual intervention,
and no appreciable drift affecting hippocampus orientation or
positioning in the HBs is noticeable during the extraction
process. Visual inspection of the whole set of 133 HBs
shows that the level of spatial registration of similar anatomi-
cal structures is very high. Such stability is not surprising if
one considers the way the whole procedure works. At the
beginning, the early extractions exhaust the set of the HBs
which are very similar to the manually defined HB. Then, the
procedure starts extracting HBs which are progressively dif-
ferent from the first ones, but diversity creeps into the grow-
ing HB database very slowly, thanks to the relevant size of
the population of the available MR images. Thus, the orien-
tation and position of the essential geometrical features of
the hippocampal formation are preserved during the whole
process of HB extraction.

The same procedure was applied to the left hippocampi. A
first example of a left HB is manually generated and, then,
the whole process just described is run on the left side of the
brain. The result consists in the generation of the matrices of
scores and of geometrical parameters and in the extraction of
the 133 left HBs.

II.D. Selection of templates

The procedure described in Sec. II C to generate the 266
HBs is rather demanding and it is unreasonable to run over it
again for extracting the two HBs of any new MR image. In
this section we show that the extraction can be successfully
performed by a smaller number of properly chosen HBs, in
the following denoted as HB templates �HBTs�.

The basic idea of the HBT selection process is to create
groups of HBs, or clusters, in such a way that the HBs in the
same cluster are near and the HBs belonging to different

clusters are far. In general, let n be the number of the avail-
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able HBs �n=133 in our case�. Here we denote by di,j the
distance between HB�i� and HB�j� as defined in Eq. �3�. All
di,j are known and can be considered as the entries of a
symmetric n�n matrix, with vanishing diagonal elements.
Thus, each HB can be considered as a point belonging to an
N-dimensional space �N=63 000� and whose distances from
all other HBs are known.

The classification of the n HBs in homogeneous clusters
is performed by means of the k-means algorithm.39 This al-
gorithm tries to find a partition of the whole set of data into
k clusters that are as compact and well separated as possible.
Each cluster is defined by its members and by its centroid,
i.e., the HB having a minimal sum of distances from all
members of the cluster.

For a given value of k, the algorithm needs the initial
centroid position as input. These are fixed selecting k ran-
domly chosen HBs among the whole population of n HBs
�k�n�. Since the final result depends on the initial choice,
the algorithm is repeated ten times with different initial cen-
troid selections, and the best result is kept. The required set
of k HBTs is represented by the centroids of the optimal
partition.

With the purpose of finding the appropriate value for the
number k of HBTs, some tests were performed by increasing
the number of clusters from k=3 up to k=10. The quality of
the eight solutions can be evaluated in a quantitative way by
means of the corresponding average silhouette values. For a
k-clusters partition, the silhouette value for point i is defined
as

Si =
mink�bi,l� − ai

max�ai,mink�bi,l��
, �4�

where ai is the average distance of point i from the other
points in its cluster and bi,l is the average distance of point i
from the points belonging to cluster l. This quantity is a
measure of how similar that point is to points in its own
cluster compared to the points in other clusters. Its value
ranges from 	1 to +1 and is given by

S̄ =
1

n
�
i=1

n

Si, �5�

where the sum is over the whole population of n points. The

plot of S̄ for k=3 to k=10 is shown in Fig. 2 and indicates
that average silhouette values begin to decrease for k�6.

The main objective of the above illustrated clustering pro-
cedure consists in selecting a small number of k HBTs as
representative of the ample morphological variability con-
tained in the whole MR data set and, finally, in finding an
appropriate value for k. Thus, the performance of such small
sets of HBTs in extracting all the 133 right HBs was evalu-
ated. The test consisted of extracting all HBs from all MR
images by means of every set of k HBTs. Each MR image
was registered to all the k HBTs and the actual HB extraction
was performed on the basis of the best score obtained
�among the k available scores�. The test was repeated for k

=3–10. The procedure generated eight sets of 133 HBs to be
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compared to the original set of HBs extracted by means of
the general procedure described in Sec. II C. In order to
evaluate the performance of the eight HBT sets in extracting
all HBs, we calculated, according to Eq. �3�, the average
distance between the newly extracted HBs and the original
ones. The result is shown in Fig. 3 and displays average
distance values less than 0.1 for all values of k=3–10. Ob-
viously such values decrease when the number k of HBTs
increases.

On the basis of the results obtained by the previous tests
and shown in Figs. 2 and 3, k=5 was chosen for the number
of HBTs giving the best trade-off between representative ca-
pability and dimension of the template dictionary. A sagittal
slice of the five right templates is shown in Fig. 4. The same
procedure and the same tests were applied to the left hippoc-
ampi �see Figs. 2 and 3�, and also in this case the choice k
=5 represents an excellent trade-off.

FIG. 2. Average silhouette for k=3 to k=10 for right �circles� and left hip-
pocampi �squares�.

FIG. 3. Average distance for k=3 to k=10 for right �circles� and left hip-

pocampi �squares�.
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III. APPLICATION OF THE SOFTWARE

III.A. Subjects

In order to test the HBT extraction efficiency on images
acquired with different scanners and/or with different system
settings we processed n=532 images, partly acquired by the
National Institute of Cancer �IST� on patients clinically
treated at the Clinical Neurophysiology unit in Genoa,
Italy, and partly downloaded from the Alzheimer
Disease Neuroimaging Initiative �ADNI� database
�www.loni.ucla.edu/ADNI�.40 The ADNI was launched in
2003 by the National Institute on Aging �NIA�, the National
Institute of Biomedical Imaging and Bioengineering
�NIBIB�, the Food and Drug Administration �FDA�, private
pharmaceutical companies, and nonprofit organizations as a

FIG. 4. Sagittal sections of the five right HBTs.

TABLE II. Ensemble properties of our “test” subjects

AD

No. of subjects 150 �62 M, 88 W�
Age �years� 76.3�5.8
MMSE score 23.2�4.1

-box score 0.28�0.03
Medical Physics, Vol. 36, No. 8, August 2009
$60 million, 5 year public-private partnership. ADNI is the
result of efforts of many coinvestigators from a broad range
of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the US
and Canada. The initial goal of ADNI was to recruit 800
adults, ages 55–90, to participate in the research—
approximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed
for 3 years, and 200 people with early AD to be followed for
2 years.

The study included 150 patients with mild AD �62 men,
88 women; mean age�SD, 76.3 years�5.8; MMSE score,
23.2�4.1�, 247 patients with aMCI �143 men, 104 women;
mean age�SD, 75.3 years�6.7; MMSE score, 27.0�1.8�,
and 135 elderly healthy controls �61 men, 74 women; mean
age�SD, 76.4 years�6.1; MMSE score, 29.0�0.8� �see
Table II�. For a subset of 50 aMCI patients clinical follow-up
data were available �3 year average follow-up time�. Among
them 25 converted to AD and 5 reverted to normalcy or
developed pathologies different from AD, whereas the re-
maining 20 were still affected by memory deficit but without
dementia.

The images are 1.5 T screening scans, acquired on scan-
ners manufactured by Philips, Siemens, and GE, consisting
of a straight sagittal 3D MPRAGE sequence. The images
were not corrected for gradient nonlinearity, B1 nonunifor-
mity, and intensity nonuniformity to better represent average
scans obtained in “real world” clinical practice. Each image
was registered onto the five HBTs and the extraction was
successfully carried out as confirmed by visual inspection.

III.B. The �-box score

In this section we introduce a novel statistical indicator,
which measures MTL atrophy and is computed on the inten-
sities in the automatically extracted HBs. Because the abso-
lute intensity of a T1-weighted image is meaningless on its
own, after the extraction of the HBs a preliminary equaliza-
tion of the gray levels was necessary in order to map the
mean cerebrospinal fluid �CSF�, gray matter �GM�, and WM
intensities of each HB to common references. This prepro-
cessing, which required a rough segmentation in CSF, GM,
and WM, was necessary for obtaining reliable results from
voxel based operations and comparisons among HBs.

The next step consisted in preparing the average HBs rep-
resentative for controls and for AD cohorts. In order to maxi-
mize intragroup similarities and intergroup differences, out-
liers in each group were preliminarily discarded. For each
group a distribution of distances was built after defining a

error is one standard deviation.

MCI Controls

247 �143 M, 104 W� 135 �61 M, 74 W�
75.3�6.7 76.4�6.1
27.0�1.8 29.0�0.8

0.31�0.03 0.34�0.03
. The
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metric among HBs in terms of the usual scalar product. Out-
liers for each group were selected and removed from the
least significant 5% of the corresponding distance distribu-
tions just obtained. After the outlier removal, the average
HBs representative for controls and AD cohorts were pre-
pared by taking the voxel-by-voxel median for each group.
Subsequently, the voxel-by-voxel difference between these
two medians was performed and denoted as the 
 box. The
projection of every HB onto the 
 box, evaluated by means
of the scalar product, produces the required intensity-based
measure, named hereafter 
-box score. Age detrending was
applied to our variable to ensure that the analysis was not
biased by age confounding effects.

III.C. Results

Group differences were assessed by using Student’s two-
sample t test. Significant differences of MTL atrophy, mea-
sured by the 
-box method, were detected both in AD and in
aMCI cohorts �AD vs controls, 0.28�0.03 vs 0.34�0.03,

FIG. 5. Box plot of 
-box score for controls and AD. Lines represent the m
area under the ROC curve is 86.3%.
FIG. 6. Box plot of 
-box score for controls and aM
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P�0.001; aMCI vs controls, 0.31�0.03 vs 0.34�0.03, P
�0.001�. MTL atrophy in the subgroup of 25 aMCI convert-
ers was similar to the one from the AD group and was sig-
nificantly different from the one of the controls �0.27�0.03
vs 0.34�0.03, P�0.001�.

Individual classification on the basis of the 
-box score
was also analyzed by using the receiver operating character-
istic �ROC� curves, which indicate the relationship between
sensitivity and 1-specificity for each intergroup discrimina-
tion. The area under the curve was 0.863 for AD patients vs
controls �Fig. 5�, 0.746 for aMCI patients vs controls �Fig.
6�, and 0.880 for aMCI converters vs controls �Fig. 7�. With
specificity set at 85%, the sensitivity was 74% for AD vs
controls, 45% for aMCI vs controls, and 83% for aMCI con-
verters vs controls.

IV. DISCUSSION

While several automated hippocampal segmentation
methods have been proposed,25,41–45 most of them rely either

, boxes the interquartile range, and whiskers the range; stars=outliers. The
edian
CI. The area under the ROC curve is 74.6%.
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on the manual identification of several hippocampal land-
marks on each scan16,25,46,47 or on algorithms based on the
intensities and spatial anatomical relationship of different
brain structures to guide hippocampal outlining.24,48 Webb et
al.49 devised an automated method to detect hippocampal
atrophy in patients with temporal lobe epilepsy based on the
analysis of the image intensity differences between patients
and controls within a volume of interest centered on the hip-
pocampus. Thompson et al.18 generated color-coded maps to
visualize the hippocampal atrophy rate using 3D parametric
mesh models of manually segmented hippocampal regions
on serial scans. In addition, an automatic measure of hippoc-
ampal atrophy rates has been derived using regional fluid
registration23 or by calculating the regional boundary shift
integral.22 However, both methods require manual segmenta-
tion of the baseline hippocampal region. Rusinek et al.50

used the boundary shift integral analysis applied to a volume
of interest centered on the hippocampus to calculate the rate
of MTL atrophy. Compared to these methods our procedure
requires no prerequisites for automation.

Moreover, few of these methods have been applied to
patients with AD and/or MCI and rarely did researchers re-
port the accuracy of their techniques in the differentiation
among MCI, AD, and controls. Carmichael et al.20 assessed
the performance of automated atlas-based segmentation by
using several freely available registration methods �auto-
mated image registration �University of California at Los
Angeles, Los Angeles, CA�, statistical parametric mapping
�Wellcome Department of Imaging Neuroscience�, functional
MR imaging linear image registration tool �University of
Oxford, Oxford, England�, and a fully deformable approach�
in AD and MCI patients. They came to the conclusion that
these approaches are less precise when applied to AD pa-
tients than controls but this should be tempered by the fact
that these techniques were not specifically designed for this
task. Fischl et al.24 proposed a general method, derived from
a probabilistic atlas, to automatically label different noncor-
tical structures, including the hippocampus, and applied this

FIG. 7. Box plot of 
-box score for controls and aM
technique to patients with mild and questionable AD. The
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method helped identify significant group differences in terms
of hippocampal volume but the authors did not investigate
the classification of individual participants. Csernansky et
al.51 used the high-dimensional brain mapping approach, on
the basis of fluid registration with a template, to obtain hip-
pocampal volumes and hippocampal shape differences be-
tween patients with very mild AD and controls. By using a
classification on the basis of volume and shape features, they
achieved a sensitivity of 83% and a specificity of 78%. By
using a similar high-dimensional brain mapping approach,
Hsu et al.46 compared automated and manual segmentations
in AD and cognitively impaired patients. They reported good
correlations between manual and automated measurements
of the hippocampal volume. However, they did not investi-
gate the accuracy of this technique for the classification of
individual patients. Colliot et al.52 evaluated the accuracy of
automated hippocampal volumetry to help distinguish be-
tween patients with AD, patients with MCI, and elderly con-
trols. Individual classification on the basis of hippocampal
volume resulted in 84% correct classification �sensitivity,
84%; specificity, 84%� between AD patients and controls and
73% correct classification �sensitivity, 75%; specificity, 70%�
between MCI patients and controls. Ridha et al.21 compared
an automated intensity-based measure of medial temporal
lobe atrophy �ATLAS� with volumetric and visually based
methods. Their measure differentiates patients with AD from
controls at cross-sectional and longitudinal levels. At base-
line, for a specificity of 85%, the sensitivity of hippocampal
volume measurement and visual rating scale19 were similar
�84% vs 86%�, whereas the sensitivity of the ATLAS mea-
sure was lower at 73%.

In this work we introduced a novel approach, based on the
measure of a new statistical indicator, the 
-box score, able
to separate the AD, aMCI, and controls cohorts. Since it is
well known that MTL atrophy is associated with declining
cognitive function,13 we showed that our method is able to
capture differences between subgroups of interest with dif-
ferent stages of cognitive impairment, with comparable dis-

converters. The area under the ROC curve is 88%.
CI
criminating capability between aMCI converters and controls
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and between AD patients and controls. This result should be
considered with caution owing to the relatively small number
of converters. Anyway, this is in agreement with several
studies regarding manual segmentation of hippocampus,
which have reported that baseline hippocampal volume is an
indicator of future progression to AD.13,53–56 This is also in
agreement with studies based on visual rating, which clearly
found MTL atrophy in patients who subsequently converted
to AD.57–59

Compared to other methods of hippocampal or MTL at-
rophy measurement, our method, which does not directly
tackle the objective of hippocampus segmentation, is fully
automated, allowing the analysis of large sets of data, and
requires relatively moderate image postprocessing and pre-
requisites for automation. Therefore, it could be a good can-
didate for being more widely used than other automatic
methods.

In conclusion, we report a novel procedure for assessing
MTL atrophy based on intensity measurement in a standard-
ized perihippocampal volume using established T1-weighted
volumetric scans. This measure significantly differentiates
patients with AD from controls and MCI converters from
controls. The technique is simple to use and may be of value
in clinical practice for an early diagnosis of AD, without the
need for expert assessment or labor intensive manual mea-
sures.
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